15,000 research outputs found

    Commodity and Financial Networks in Regional Economics

    Full text link
    The article discusses the relationship between commodity-production and financial network structures in the regional economy as dual conjugate systems. Material flows (raw materials, goods and so on) circulate in the commodity network as shown by Leontiev’s input-output balance model. Nonmaterial flows of property rights, money, and so on circulate in the financial network and reflect the movement of material objects in commodity networks. A network structure comprises closed and open circuits, which have fundamentally different characteristics: locally closed circuits meet local demand by supplying locally produced goods, thus ensuring self-reproduction of the local economy; open (or transit) circuits provide export-import flows. The article describes the mechanism of ‘internal’ money generation in closed circuits of commodity-production networks. The results of the theoretical study are illustrated by the calculations of closed and open circuit flows in the municipal economy model. Mutual settlements between the population and manufacturing enterprises are given in matrix form. It was found that the volume of the turnover in closed circuits of the municipal economic network model is about 28.5 % of the total turnover and can be provided by ‘internal’ non-inflationary money. The remaining 71.5 % of the total turnover correspond to the flows in the network’s open circuits providing export and import. The conclusion is made that in the innovation-driven economy, main attention should be given to the projects oriented towards domestic consumption rather than export supplies. The economy is based on internal production cycles in closed circuits. Thus, it is necessary to find the chains in the inter-industrial and inter-production relations which could become the basis of the production cycle. Money investments will complete such commodity chains and ‘launch’ the production cycle.The work has been prepared with the supprot of the Ural Federal University within the UrFU Program for the winners of the competition “Young Scientists of UrFU” No. 2.1.1.1-14/43

    Kerk en owerheid, en die rassevraagstuk in Suid Afrika

    Get PDF
    No Abstrac

    Numerical calculation of the combinatorial entropy of partially ordered ice

    Full text link
    Using a one-parameter case as an example, we demonstrate that multicanonical simulations allow for accurate estimates of the residual combinatorial entropy of partially ordered ice. For the considered case corrections to an (approximate) analytical formula are found to be small, never exceeding 0.5%. The method allows one as well to calculate combinatorial entropies for many other systems.Comment: Extended version: 7 pages, 10 figures (v1 is letter-type version

    Bose-Einstein Condensation in Geometrically Deformed Tubes

    Full text link
    We show that Bose-Einstein condensate can be created in quasi-one-dimensional systems in a purely geometrical way, namely by bending or other suitable deformation of a tube.Comment: RevTex, 4pages, no figure

    Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems

    Full text link
    We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.Comment: 4 pages, 4 figure

    Counting Berg partitions

    Full text link
    We call a Markov partition of a two dimensional hyperbolic toral automorphism a Berg partition if it contains just two rectangles. We describe all Berg partitions for a given hyperbolic toral automorphism. In particular there are exactly (k + n + l + m)/2 nonequivalent Berg partitions with the same connectivity matrix (k, l, m, n)

    Thermodynamics of two lattice ice models in three dimensions

    Full text link
    In a recent paper we introduced two Potts-like models in three dimensions, which share the following properties: (A) One of the ice rules is always fulfilled (in particular also at infinite temperature). (B) Both ice rules hold for groundstate configurations. This allowed for an efficient calculation of the residual entropy of ice I (ordinary ice) by means of multicanonical simulations. Here we present the thermodynamics of these models. Despite their similarities with Potts models, no sign of a disorder-order phase transition is found.Comment: 5 pages, 7 figure
    corecore